基于光纖激光器的有源光纖傳感器
光纖激光器以其易于熱控管理、轉(zhuǎn)換效率高、輸出穩(wěn)定、寬增益帶寬、模式選擇簡(jiǎn)單且泵浦功率要求低等優(yōu)點(diǎn)而得到了廣泛的應(yīng)用。將其用于傳感應(yīng)用的光纖傳感器具有靈敏度高、可遠(yuǎn)程實(shí)時(shí)監(jiān)測(cè)、抗電磁干擾、耐腐蝕等優(yōu)點(diǎn),被廣泛應(yīng)用于生物化學(xué)、工程監(jiān)控和航空航天等諸多領(lǐng)域。本文簡(jiǎn)要介紹了可調(diào)諧光纖激光器的發(fā)展現(xiàn)狀并距離說(shuō)明了在應(yīng)力、折射率、溫度、壓力、聲波及磁場(chǎng)等方面?zhèn)鞲袘?yīng)用的實(shí)施方案。
光纖激光器
1. 引言
早在1964年Snitzer和Koester首次提出并發(fā)明了光纖激光器[1],在70年代由于低損耗光纖[2]和室溫激光二極管[3]的出現(xiàn)光纖激光器得到了進(jìn)一步的發(fā)展。1985年,S.Poole等人利用改進(jìn)后的化學(xué)氣相沉積法制作出了第一個(gè)低損耗的摻Nd光纖[4],此后人們開(kāi)始對(duì)各種不同結(jié)構(gòu)和不同摻雜元素的光纖激光器展開(kāi)了的廣泛的研究。
相較于傳統(tǒng)的固體激光器,光纖激光器具有很多優(yōu)點(diǎn)。首先,光纖增益介質(zhì)的幾何形狀本身就具有很大的表面積,腔內(nèi)產(chǎn)生的熱量很容易散發(fā)到空氣或者周圍介質(zhì)中,不需要設(shè)計(jì)額外的熱沉而只需使用簡(jiǎn)單的冷卻裝置就能夠在較高輸出功率下進(jìn)行有效的散熱并得到較好的光束質(zhì)量[5]。其次,光纖激光器由于其具有較長(zhǎng)的有源腔長(zhǎng)和較細(xì)的導(dǎo)引光纖使得電光轉(zhuǎn)換效率遠(yuǎn)高于傳統(tǒng)固體激光器,不需要太高的泵浦功率就可以得到有效的激光[6]。此外,光纖的波導(dǎo)結(jié)構(gòu)對(duì)激光光束的限制作用也保證了輸出光束的質(zhì)量,不容易出現(xiàn)傳統(tǒng)固體激光器經(jīng)常出現(xiàn)的熱致模式失真的現(xiàn)象。同時(shí),全光纖的結(jié)構(gòu)也不需要自由空間光學(xué)元件的使用從而放松了在傳統(tǒng)激光器中嚴(yán)格的校準(zhǔn)和機(jī)械穩(wěn)定性要求,簡(jiǎn)化了激光器結(jié)構(gòu)和使用,有助于實(shí)現(xiàn)激光器的小型化,提高激光器的穩(wěn)定性。上述的這些優(yōu)點(diǎn)使得光纖激光器在眾多領(lǐng)域都具有很高的科學(xué)研究和商業(yè)應(yīng)用價(jià)值。
光纖激光器原理示意圖
隨著光纖制造工藝、光纖器件以及高功率泵浦源的不斷發(fā)展,光纖激光器在輸出功率、光束質(zhì)量、輸出光波段、譜寬壓縮和脈沖持續(xù)時(shí)間等方面都獲得了顯著提升,這也促進(jìn)了光纖激光器在光纖傳感領(lǐng)域的應(yīng)用。利用光纖激光器自身具有的優(yōu)良性質(zhì),通過(guò)輸出光的變化進(jìn)行解調(diào)可以對(duì)待測(cè)物理量的進(jìn)行實(shí)時(shí)監(jiān)測(cè)。早在1993年,Serge M. Melle等人就提出了一種調(diào)節(jié)布拉格光柵的光纖激光器應(yīng)力傳感系統(tǒng)[7],將摻鉺光纖、寬帶反射鏡和光纖光柵組成光纖激光器,其輸出波長(zhǎng)即取決于用于應(yīng)力測(cè)量的光纖光柵從而實(shí)現(xiàn)一個(gè)自供給的光纖激光器應(yīng)變傳感器。此外,將光纖激光器與布拉格光柵陣列進(jìn)行組合,還能夠同時(shí)對(duì)多個(gè)位置的物理量變化進(jìn)行測(cè)量,實(shí)現(xiàn)覆蓋面更廣、實(shí)用性更強(qiáng)的大范圍分布式傳感。上述這些光纖激光傳感器在過(guò)去的數(shù)十年內(nèi)發(fā)展得相對(duì)成熟,并且已經(jīng)廣泛應(yīng)用在眾多科學(xué)研究和實(shí)際生產(chǎn)中。
2. 主要類別
2.1 應(yīng)力傳感器
應(yīng)力在生活中非常普遍,對(duì)它的監(jiān)測(cè)具有非常廣泛的應(yīng)用范圍,如大型機(jī)械的結(jié)構(gòu)穩(wěn)定性檢測(cè)以及橋梁和隧道等設(shè)施的健康監(jiān)控等都需要對(duì)應(yīng)變進(jìn)行精密測(cè)量。而基于光纖激光器的應(yīng)力傳感器靈敏度高、抗電磁干擾、耐腐蝕且實(shí)施方案靈活,在應(yīng)力監(jiān)測(cè)方面被廣泛應(yīng)用于工程實(shí)踐中。
如下圖所示為雙穩(wěn)頻反饋環(huán)路光纖應(yīng)變傳感器[8],該傳感器頻率范圍可以從準(zhǔn)靜態(tài)到幾百赫茲,由用于應(yīng)變傳感的π相移光纖布拉格光柵和作為參考的光纖法布里-珀羅干涉儀組成。系統(tǒng)使用Pound-Drever-Hall技術(shù)來(lái)產(chǎn)生誤差信號(hào),激光載波和邊帶分別通過(guò)兩個(gè)獨(dú)立的反饋回路鎖定到參考元件和傳感元件。其應(yīng)變分辨率在0.01-250Hz的帶寬內(nèi)具有出1/f的特性,在10Hz的頻率下應(yīng)變分辨率優(yōu)于0.01nε,動(dòng)態(tài)范圍高達(dá)149dB。與傳統(tǒng)的靜態(tài)應(yīng)變傳感器相比,這種傳感器在分辨率和傳感帶寬方面都有很大的提高,可以成為地球物理研究應(yīng)用中的有力工具。
基于FP腔和隨機(jī)鏡的光纖應(yīng)力傳感器
2.2 折射率傳感器
在生物、化學(xué)等學(xué)科的研究以及材料制造、醫(yī)學(xué)檢測(cè)等實(shí)際應(yīng)用場(chǎng)合中,對(duì)于折射率的檢測(cè)一直是至關(guān)重要的一個(gè)環(huán)節(jié)。光纖在折射率傳感方面具有很明顯的優(yōu)勢(shì),它的重量輕、體積小、靈敏度高、帶寬大和抗電磁干擾的特性,吸引了許多研究者的注意。近年來(lái),在光纖激光折射率傳感器的研究方面,也取得了非常顯著的成果。
如下圖所示為一種基于線性腔雙波長(zhǎng)摻鉺光纖激光器的折射率傳感器[9],該傳感器的基本結(jié)構(gòu)為線性腔,使用了兩個(gè)中心波長(zhǎng)相隔小于1nm的光纖布拉格光柵(FBG)。由于兩個(gè)FBG具有相同的EDF增益介質(zhì),因此會(huì)在腔內(nèi)發(fā)生增益競(jìng)爭(zhēng)。當(dāng)傳感元件,即一段15mm長(zhǎng)的微光纖浸入到待測(cè)溶液中時(shí),某一波長(zhǎng)的光會(huì)發(fā)生光功率損耗。兩個(gè)FBG在1.300至1.335的折射率范圍內(nèi)分別具有-231.1dB/RIU和42.6dB/RIU的靈敏度,兩個(gè)FBG波長(zhǎng)的相對(duì)功率變化具有更高的靈敏度-273.7 dB/RIU,由于降低了光源抖動(dòng)和外部干擾而具有更好的穩(wěn)定性。這種雙波長(zhǎng)增益競(jìng)爭(zhēng)折射率傳感器由于其高靈敏度和簡(jiǎn)單的結(jié)構(gòu),在化學(xué)和生物化學(xué)傳感領(lǐng)域具有廣泛的應(yīng)用潛力。
雙波長(zhǎng)光纖折射率傳感器
2.3 溫度傳感器
在溫度傳感方面,如下圖所示為一種基于法布里-珀羅混合腔和隨機(jī)鏡組合的光纖激光溫度傳感器[10],法布里-珀羅混合腔是由單模光纖與一小段懸浮芯光纖熔接構(gòu)成,隨機(jī)鏡是由多個(gè)瑞利散射沿著色散補(bǔ)償光纖傳播時(shí)產(chǎn)生的,是光纖中拉曼增益的直接結(jié)果。在該結(jié)構(gòu)中法布里-珀羅腔同時(shí)具有激光反射鏡和溫度傳感腔兩個(gè)功能。該光纖激光溫度傳感器在 15nm的波長(zhǎng)范圍內(nèi)最大輸出功率大約為4mW,同時(shí)可以在200℃的測(cè)量范圍內(nèi)溫度靈敏度達(dá)到約6pm/℃。
基于FP腔和隨機(jī)鏡的光纖溫度傳感器
2.4 壓力傳感器
在極端環(huán)境中如石油或地?zé)峋袦囟雀哌_(dá)130℃以上,傳統(tǒng)的電傳感器無(wú)法滿足持久的壓力監(jiān)測(cè)需求,與此同時(shí)能夠測(cè)量液體或氣體壓力的光纖激光傳感器引起了人們的興趣。如下圖所示為用于測(cè)量流體靜壓的偏振式法布里-珀羅光纖激光傳感器[11],使用雙折射光纖光柵和兩段橢圓芯摻鉺光纖,基于正交極化和拍頻原理,流體作用在激光腔中的其中一個(gè)橢圓芯光纖上,產(chǎn)生兩個(gè)正交偏振模式的微分相位的偏移,從而產(chǎn)生相應(yīng)縱向激光模式的拍頻的變化。另一個(gè)光纖的橢圓芯方向具有90°偏移,補(bǔ)償了溫度引起的相移。雙折射光纖布拉格光柵反射器中的色散用于消除給定階次的偏振模式拍頻的近簡(jiǎn)并性,該傳感器能夠測(cè)試的流體壓力達(dá)100MPa。
基于FP的光纖流體壓力傳感器
2.5 聲波傳感器
如下圖所示為一種用于聲波探測(cè)的高頻光纖激光傳感器[12],超聲波能夠使光纖激光腔發(fā)生形變,引起外差輸出信號(hào)的頻率變化。傳感器在22MHz處發(fā)生頻率響應(yīng),其寬帶聲學(xué)傳感靈敏度為2.25MHz/kPa,當(dāng)采樣率為100 MHz時(shí),噪聲當(dāng)量壓力達(dá)到45Pa。其針對(duì)球面波的檢測(cè)帶寬達(dá)到18 MHz。沿光纖縱向的靈敏度隨激光空間模式而變化,并由光柵和腔這兩個(gè)參數(shù)決定。在徑向方向上,靈敏度與聲源和檢測(cè)器之間的距離的平方根成反比。通過(guò)減小腔的長(zhǎng)度可以增強(qiáng)聲學(xué)靈敏度,短腔可以顯著提高傳感器的光生顯微鏡(PAM)對(duì)比度和穿透深度。
基于寬帶光纖激光器的超聲傳感器
2.6 磁場(chǎng)傳感器
如下圖所示是用于磁場(chǎng)檢測(cè)的基于磁流體的光纖環(huán)形激光傳感器[13],在激光環(huán)型腔中接入涂覆有磁流體的單模-無(wú)芯-單模光纖結(jié)構(gòu),可以同時(shí)作為帶通濾波器和磁場(chǎng)傳感元件。基于自映像效應(yīng),外界磁場(chǎng)改變時(shí)會(huì)通過(guò)作用于磁流體從而改變單模-無(wú)芯-單模光纖結(jié)構(gòu)的濾波參數(shù)即輸出光譜波長(zhǎng),得到的帶通濾波邊模抑制比為14 dB,插入損耗約為-1.03 dB。當(dāng)外界磁場(chǎng)增大時(shí),激光波長(zhǎng)藍(lán)移。在15.9 Oe到222.3 Oe的磁場(chǎng)范圍內(nèi)傳感靈敏度為12.05 pm/Oe。該傳感器具有高信噪比的輸出光譜、窄帶寬和高Q值等優(yōu)點(diǎn)。
3. 總結(jié)
本文對(duì)光纖激光器的發(fā)展歷程和研究現(xiàn)狀進(jìn)行了簡(jiǎn)介,并介紹了光纖激光器在不同傳感應(yīng)用下的傳感結(jié)構(gòu)和實(shí)現(xiàn)原理。隨著科學(xué)研究和工程應(yīng)用的需求不斷增加,用于測(cè)量各種物理量的光纖激光傳感器得到了廣泛的研究和快速的發(fā)展,近年來(lái)尤其在聲波和磁場(chǎng)等一些不太常見(jiàn)的領(lǐng)域都有了長(zhǎng)足的發(fā)展。隨著關(guān)于光纖激光器性能的不斷提高,以及更多光纖傳感結(jié)構(gòu)和解調(diào)方法的實(shí)現(xiàn),將會(huì)產(chǎn)生具有更優(yōu)性能光纖激光傳感器并廣泛應(yīng)用到各領(lǐng)域科學(xué)研究和實(shí)際工程中。
參考文獻(xiàn):
[1] Koester C J, Snitzer E. Amplification in a fiber laser[J]. Applied optics, 1964, 3(10): 1182-1186.
[2] Kapron F P, Keck D B, Maurer R D. Radiation losses in glass optical waveguides[J]. Applied Physics Letters, 1970, 17(10): 423-425.
[3] Hayashi I, Panish M B, Foy P W, et al. Junction lasers which operate continuously at room temperature[J]. Applied Physics Letters, 1970, 17(3): 109-111.
[4] Poole S B, Payne D N, Fermann M E. Fabrication of low-loss optical fibres containing rare-earth ions[J]. Electronics Letters, 1985, 21(17): 737-738.
[5] Tünnermann A, Schreiber T, Limpert J. Fiber lasers and amplifiers: an ultrafast performance evolution[J]. Applied optics, 2010, 49(25): F71-F78.
[6] Jeong Y C, Boyland A J, Sahu J K, et al. Multi-kilowatt single-mode ytterbium-doped large-core fiber laser[J]. Journal of the Optical Society of Korea, 2009, 13(4): 416-422.
[7] Melle S M, Alavie A T, Karr S, et al. A Bragg grating-tuned fiber laser strain sensor system[J]. IEEE Photonics Technology Letters, 1993, 5(2): 263-266.
[8] Chen J, Liu Q, Fan X, et al. Ultrahigh resolution optical fiber strain sensor using dual Pound–Drever–Hall feedback loops[J]. Optics letters, 2016, 41(5): 1066-1069.
[9] Wang S, Liu S, Ni W, et al. Dual-wavelength Highly-sensitive refractive index sensor[J]. Optics express, 2017, 25(13): 14389-14396.
[10] Pinto A M R, Lopez-Amo M, Kobelke J, et al. Temperature fiber laser sensor based on a hybrid cavity and a random mirror[J]. Journal of Lightwave Technology, 2012, 30(8): 1168-1172.
[11] Bohnert K, Frank A, Rochat E, et al. Polarimetric fiber laser sensor for hydrostatic pressure[J]. Applied optics, 2004, 43(1): 41-48.
[12] Bai X, Liang Y, Sun H, et al. Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy[J]. Optics express, 2017, 25(15): 17616-17626.
[13] Bai X, Yuan J, Gu J, et al. Magnetic field sensor using fiber ring cavity laser based on magnetic fluid[J]. IEEE Photonics Technology Letters, 2016, 28(2): 115-118.
推薦內(nèi)容
杰普特進(jìn)入多家動(dòng)力電池龍頭企業(yè)
發(fā)布時(shí)間:2022/02/26
杰普特 | 破局崛起!探尋新趨勢(shì)新未來(lái)
發(fā)布時(shí)間:2021/04/29
做時(shí)間的朋友:第一屆中國(guó)激光上市公司峰會(huì)暨激光領(lǐng)軍人物大會(huì)圓滿落幕!
發(fā)布時(shí)間:2021/03/31
賦能智造,“光”耀未來(lái),杰普特與您共話激光技術(shù)與市場(chǎng)發(fā)展
發(fā)布時(shí)間:2020/10/15
杰普特首次公開(kāi)發(fā)行A股上市儀式
發(fā)布時(shí)間:2019/10/31